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SECONDARY ERRORS AND OFF-DESIGN CONDITIONS IN
OPTIMAL ESTIMATION OF SPACE
VEHICLE TRAJECTORIES

By Gerald L. Smith
SUMMARY

To estimate a space vehicle's trajectory by means of linear filter theory,
the navigation system and its inputs must be represented mathematically. Inevi-
tably, the representation, or model, is imperfect either because of a deliberate
omission or an approximation of certain aspects of the problem for the sake of
simplicity, or because of inaccurate a priori knowledge of the system and its
inputs. The performance of the system is degraded by such imperfections or, more
cogently, is not truly optimum.

For the estimation system tc be optimum, all error sources, including those
of secondary importance, must be represented in the mathematical model. This
generally means that every error affecting system performance is regarded as a
state of the system and in an optimal system must be estimated along with the
other state variables. Astrodynamic constant uncertainties and bias-type obser-
vation errors are used to illustrate this principle and the technique by which
errors are represented as state variables. Numerical results are given which
show the effect of these two types of errors on the performance of a circumlunar
midcourse guldance system.

When the gystem is not optimum because of an incorrect model, the off-design
performance must be analyzed. Equations are developed which can be adjoined to
the system equations for computing the performance of the nonoptimal system,
using as an example a system with uncompensated bias-type observation errors
mixed with the random errors for which the system is designed. Numerical results
are given which show that performance can decline substantially in this situation.

INTRODUCTION

In the circumlunar midcourse guidance study reported in references 1 and 2,
linear filter theory was used to design an optimal system for estimating a space
vehicle's trajectory from a sequence of on-board observations of space angles.
An integral part of this optimal system is a mathematical model consisting of
the equations of motion assumed for the vehicle in space and the errors entering
the system.

The performance figures quoted in the previous studies are legitimate only if

the model assumed 1s valid. This is because in the optimal processing of obser-
vational data, the estimation system carries on a running computation of the
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second-order statistics (covariance matrix) of estimation error. These computed
statistics, which depend on the model carried within the system, are interpreted
as the performance of the system. Obviously, if the actual system and its inputs
are different from the assumed model, the indicated performance figures will
differ from the true performance. Therefore, there exists a natural concern
regarding the appropriateness of the model, and it is the purpose of this paper
to explore this problem area.

In the construction of a model for the earlier studies, only the primary
error sources were included because errors from other sources were presumed to be
negligible. Besides this omission of small errors there is also the problem of
the proper representation of major errors, the description of which always
involves an implicit discrepancy because, in practice, the character of the true
errors is never known precisely. Even if it were, a deliberate approximation
would usually be employed to keep the system simple.

Definitive answers to all possible questions regarding model inaccuracies
of the type described above will not be attempted in this report, primarily
because the subject is too extensive and, in many areas, somewhat ill-defined.
Rather, the emphasis here is on the description of techniques for analyzing
any error situation desired. Two examples of model inaccuracies will suffice to
illustrate the techniques. These are described in the following paragraphs.

The first inaccuracy to be considered arises from the fact that the equa-
tions of vehicle motion within the system are not a perfect representation of the
true trajectory dynamics. This gives rise to unavoidable inaccuracies which
constitute one of the secondary types of error neglected in the earlier analysis.
This is quite a complex error source which will not be thoroughly analyzed here,
but one type of computational error which is well defined is convenient to use
as an example. This is the inaccuracy due to the uncertainties in the knowledge
of the astrodynamic constants which appear in the equations of motion. In this
paper i1t is shown how these uncertainties can be accounted for in the system
synthesis and thus optimally compensated in the estimation process. An espe-
cially interesting feature of this study is that the system so designed is capa-
ble of producing improved estimates of the astrodynamic constants. Although
obtaining such estimates is not a design objective for the lunar mission as con-
ceived for these studies, this could be an objective for other space missions,
and the results give some preliminary ideas on what might be expected in such an
application.

The second type of inaccuracy to be considered has to do with the model
assumed for observation errors. In the previous work, results were given only
for random observation errors uncorrelated from one observation to the next. The
assumption of this dynamical character for the error may not be valid, and it is
of interest to investigate the influence which such dynamical misrepresentation
may have on system performance. In this report correlated errors are studied by
assuming a combination of bias-typel and random errors, & model which is artifi-
cial but avoids the problem of identifying specific observation instrumentation.

iBias-type errors are defined as errors which remain constant (or change
only according to deterministic laws) over relstively long periods of time.




In the previous work the basic mathematical development for treating any type
additive observation error was given and only minor additional detail is required
in this report to illustrate how the system is designed for optimal compensation
of the assumed bias-plus-random error.

The case of bias-type errors is used further in the report to illustrate
off-design analysis. The situation assumed is one in which both bias and random
errors are present but the proper compensation for the bias error is not imple-
mented in the system. Two system design possibilities are comsidered: (1) a
complete omission of bias compensation, and (2) a partial compensation of bias.
A system so designed is not optimal, so that the covariance matrix of estimation
error computed within the system is not a true measure of the performance, but
rather only an indication of the performance the system "believes" it achieves.
Additional equations are, therefore, necessary to give the true, or off-design,
performance.

SYMBOLS
As submatrix of prediction matrix 9*(te,t)
B covariance matrix EﬁhgT
D covariance matrix EXXT
e astrodynamic constant uncertainty vector
E astrodynamic constant gradient matrix
F perturbation matrix
8 acceleration of gravity at Earth's surface
G gravity gradient matrix
H submatrix in M relating y to x
I identity matrix
J second harmonic of Earth oblateness
K,K* welighting matrix
M matrix relating y to x*
n; uncorrelated observation error vector
no bias observation error vector
P,p* covariance matrix of estimation error vector
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indicated covariance matrix of estimaticn error
difference P-P!

covariance matrix of n

position deviation from reference

error in estimate of r

predicted end-point miss

position vector (subscripts indicate origin and end)
magnitude of vector R

Earth radius

Moon radius

covariance matrix of velocity correction error
general time agreements

end -point time

time of kth observation

input random vector

covariance matrix of u

velocity deviation from reference

error in estimate of v

velocity to be gained

covariance metrix of estimate 2

total midcourse velocity correction

covariance matrix of x*

six vector of pesition and velocity deviations from a reference

trajectory
augmented state vector

estimates of x,x*
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X,X* error in estimate, x-%X, x¥-x*

X,Y,7Z space position coordinates

y observation vector

a declination of observed body

B right ascension of observed body

half-subtended angle of observed body

A increment
v gravitational constant
o standard deviation of subscript random variable
o, ox transition matrix

Notation Conventions
¢y, (™ first and second time deriatives of ( )
()T transpose of matrix ( )
()™t inverse of matrix ( )
E( ) expected value of ( )

Subscripts

e end point
B EBarth
k based on first k observations
M Moon
S Sun

v vehicle



ANATYSIS

Compensation for Astrodynamic Constant Uncertainties

Statement of the problem.- In references 1 and 2 it was assumed implicitly
that the only errors in the circumlumnar midcourse guidance problem were the
errors in injection and in observations. Although these are probably the major
sources of error, it is obvious that other errors exist which may become impor-
tant when the optimal estimation system does a good job in reducing the uncer-
tainties in the knowledge of the trajectory. In this section we will discuss
one such additional error, namely, imperfect knowledge of the astrodynamic con-
stants which appear in the equations of motion employed in the optimal filter,
and show how this type of error may be optimally compensated.

In the earlier circumlunar navigation study four-body equations of motion
were used; that is, the gravitational attractions between the vehicle, Earth,
Moon and Sun were taken into account. Also, the second harmonic of Earth's
oblateness was used. The astrodynamic constants in these equations are then the
gravitational constants of the three celestial bodies, the distances from Earth
to Moon and Sun, the Earth oblateness term, and the radius of Earth, a total of
seven constants.

Errors in knowledge of all of these constants are not expected to be of
equal importance. For instance, the radius of Earth appears only in conjunction
with Earth oblateness which already has a small effect. Therefore, we begin by
removing Farth radius from consideration.

To evaluate the importance of the remaining six constants, we take the
partial derivatives of the equations of motion with respect to these constants.
The first equation (eq. (Al) in ref. 1, written in slightly different notation)
suffices to illustrate the procedure:
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Taking the derivatives and discarding small terms, we obtain:
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The coefficlents of this equation give the sensitivities of the first equation of
motion to the various astrodynamic constant errors.

We must next establish the size of the various errors to be assumed. In
this study we have used values taken from reference 3 which seem as good as any
avallable, being neither too optimistic nor too pessimistic. It should be noted,
however, that the experts do not agree on these values, and furthermore, that
with new experiments investigators are constantly seeking to obtain better values
for the constants.

The magnitudes of the errors assumed in this study are shown in the second
column of table I. Percentage values are given in the third column. These
values, when inserted in equation (2), gilve a measure of the errors in the com-
puted acceleration produced by the astrodynamic constant uncertainties. The
acceleration errors are proportional to the coefficients in equation (2), which
are functions of the vehicle's position. By evaluating these coefficients at
those points in cislunar space where they take on their maximum values, the max-
imum computed acceleration errors may be determined. These are shown in the last
column of table I. It is seen that Aug, Auy, ARpMm contribute the major errors,
and the study is therefore restricted to these three.

The errors Apg, Opy, ARy, must be represented in statistical terms for
inclusion in the problem. Specifically, a covariance matrix of the errors is
required. Since it is not known what statistical parameter the figures in
table I are supposed to represent, we assume arbitrarily that these are standard
deviations. This might be a pessimistic view since it is possible that the
* values in table T are actually extremes and therefore should more reasonably
correspond to 2 or 30 values. However, without more detailed knowledge of the
manner in which the figures were computed, we will remain on the conservative
side.



Correlation between the errors is assumed zero so that the covarilance
matrix elements are all zero except on the principal diagonal. The justifica-
tion for this assumption is that the three constants have been determined by
essentially independent experiments. The most accurate value of U has been
obtained from measurements of Earth's radius and the acceleration of gravity on
Earth's surface:

bE = RpZeg (3)

The Moon's gravitational constant is computed from upg and the ratio of
Moon and Barth masses:

M
MM = el Hp ()‘I')

where the mass ratioc has been computed from experiments entirely unrelated to
those used to compute W - Since the mass ratio is far less accurately known
than is up, most of the error in n is due to the mass ratio error, and, for
all practical purposes, Oy 1s independent of Aug.

The best figures available for Rpy, the Earth-Moon distance, have been
obtained by bouncing radio signals off the Moon. A knowledge of the radii of
Farth and Moon are required to compute Rpy from this data, which implies a cor-
relation between App and ARpy. However, the uncertainties in the knowledge
of these radii are far less than that in the radar measurement itself. Thus,
ZXREM is an essentially independent random variable.

The estimation equations.- To design an estimation system, we seek to
utilize the solution to the estimation problem given in references 1 and 4. This
requires that the equations of the stochastic processes involved in estimation be
represented in the linear form for which the optimal estimation solution has been

obtained:

x*(t) = F(t)x*(t) + u*(t) (5)

]

y(t) = M(t)x*(t) (6)

Here, x* is the "state" of the system, u* is a "white noise" vector-valued
stochastic input process, and y 1is the observation process, or output of the
system.

By examining equation (6) one can see that all quantities which affect the
system output, y, must be represented in the state vector, x*. Since observa-
tions in general are functions of the vehicle position and the observation errors,
equations for both of these processes are required.

Consider first the vehicle motion equations. For a system which optimally
compensates for the astrodynamic constant uncertainties, the astrodynamic con-
stants must be regarded as variables in the same manner as are the components of
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vehicle position and velocity; that is, the equations of motion are written as
functions of X, ¥, Z, My Hy» and REM:

X = £2(X, Y, Z, vg, Wy, Bmy) (72)
-.Y’ = fg(X, Y, Z; |J~E) FLM, REE/[) (7b)
.Z.. = fs(X, Y, Z, HE, MM REM) (70)

These equations must be linearized for representation in the form (5). The
procedure is an expansion in Taylor series discarding all but the first-order
terms. For instance, for equation (7a) we obtain

. . of of of
X + AX = f3 + —= AX + —= AY + —L A7
X dY Y
+ ———af L A]J.E + ———af 1 A'JNI + af 1 AREM ( 8 )
Oug Oty EM

where T3 and its partials are evaluated for a reference trajectory corresponding
to the nominal, or mean, values of X, Y, Z, and the astrodynamic constants. The
quantities AX, ..., ARgM are then random variables with zero mean. Equation (8)
can be rewritten

Ai& =af_lAX +a_f}.AY+_a_f;£AZ
oX oY o7
of of
—SﬁA Jra—izxpLM+a > ARpy (9)
If the vector x 1is defined as
AX
AY
A7
= A 10
X A% (10)
3
A7
and the vector e as
Ap.E
e = A}_,LM (ll)
AREM



it is seen that equations (7) can be written in the linearized form

b oJ{)

where the Fy matrix contains the partials of f£3, fo, f3 with respect to X, Y,
and Z, and E +the partials of £, fz, £33 with respect to the astrodynamic con-
stants. Thus, equation (12) is in the required form. Note that there is no
input, u, in equation (12) because the vehicle is assumed in a free-fall

condition.

Considering now the observation error equations, we note that observations
in general are of the form

y(t) = H(t)x(t) +n(t) (13)

where H 1is a matrix of partials of those quantities being observed with respect
to the components of x (i.e., vehicle position and velocity), and n(t) is the
additive error. It will be assumed here that the error n(t) can be represented
by the linear eduations

w(t) = Fe(t)w(t) + ult) (1)

I

n(t) = I'(t)w(t) (15)

Here, w(t) is an assumed basic underlying error process with white noise input
u(t) and dynamics Fy,(t), and I represents the manner in which components of w
are combined to form n. Thus, equation (13) can be written

y(t) = B(e)x(t) + I'(t)w(t) (16)

which is of the form (6) if w and x are parts of the state vector x¥. By
adjoining equation (14) to equation (12) we have an equation of the form (5).

10



The system state vector is now defined as

(s )

JAVA
X.* = < Ap’E = e (17)

where x 1is the six vector of position and velocity deviations from nominal,

e 1is the three vector of astrodynamic constant uncertainties, and w is the

p vector of error sources contributing to the observation error. The equations,
or mathematical model, of the system can now be written in partitioned form as

X FX E O X 0
ey =10 o0 o0 e + 0 (18)
W 0 0} Fw W u
X
{v} =[E O I'] { e (19)

The square matrix on the right in equation (18) is identified as the F matrix
of equation (5), and the matrix in equation (19) is the M of equation (6). The
middle submatrix in the second row of F 1is null because there are no dynamics
associated with e; that is, é = O, or e(t) = e(to). The other null submatrices
in T are due to the assumption that the dynamics of x, e, and w are uncoupled.
The null submatrix in (19) is null because the observations do not depend
directly upon e.

11



The submatrices Fy and E in (18) are made up of partial derivatives as
described earlier:

0 0 0 i 0 ©

0 0] 0 0o 1 O

P o= Ofy Ofy Of; 0 0 0 (20)

Of > Ofs Ofs
X JdY 9%

afs Af a afs 0 0
__§X oY 0%

Lﬁo

0 0 0 T
0] o 0

0o 0 ©
Of1 df1 Of:

E = 21)

Oug OuyM  OREM (

of 5 Ofs Ofs
BHE BMM BREM
st afs afg

| Oug Oy Rgy

The solution of equation (18) is:

t
x*(t) = o(t,t0)x*(to) + b/ﬁ o(t,T)u*(T)dT (22)
to

where ®(t,t,) is the "transition” matrix of the system and is the solution of
the matrix differential equation

®(t,t0) = F(t)0(t,t0) (23)

with initial conditions ®(to,teo) = I.
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An optimal® estimate of the vehicle's position and velocity for use in
guiding the vehicle can be obtained, as shown in references 1 (eq. (9)) and 4
(ea. (21)) by processing the sequence of observations by means of the linear
estimation equations:

N

R () = (g by )RE (bgemy) (24)

2% (b))

2 () + K(ex) [y () - MOy )&, () ] (25)

where X* 1is the estimate of x*, t 1is the time of the kth observation in
the sequence, M is a matrix of partials of the observation variables with
respect to the state variables, and K is the optimal weighting matrix. The
subscripts k-1 and k on £* are used here to indicate that the estimate is
based respectively, on the first k-1 and k¥ of the seguence of observations.

The weighting matrix K for use in equation (25) is computed from the
following equations (equivalent to 6, 10, 11 in ref. 1, and egs. (28), (29), (30),
(32) of ref. k)

U (tyestyy) = ttk O*( by, 7)U(T) 0¥ (b3, 7)dT (26)
k-1

Preo,(t) = @*¥(tye,tpe_; )Py g (Byem ) O¥T (txc,bp0 1, ) + U (g, by q) (27)

K(t1e) = oy (3 )M (3 ) IMt3c) Py (e )MT (1) 172 (28)

Pe(tr) = [T - K(tp)M(ty) 1P 1 (tx) (29)

where Py 1is the covariance matrix of the error in estimate based on k obser-
vations:

Pp = EX ¥ T (30)
}'Z*k = X*—'}\C*k (31)

and U 1is the covariance matrix of the input, u:

U = Euu? (32)

2OEptimal estimate 1s here defined as the minimum variance unbiased estimate.
See reference U4.
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It is noted that the vector estimate obtained from the above computations
includes estimates of the observation errors and of the astrodynamic constant
uncertainties. In the guidance problem these are of no interest in themselves
but are required if the other state variables, vehicle position and velocity, are

to be estimated optimally.

If the observation errors are random (i.e., uncorrelated from one observa-
tion to the next), the estimate of this portion of the state vector is zero just
prior to processing an observation, hence, of no use in estimating the other
state variables and may be omitted, with a resultant simplification of the system
as shown in the appendix. This is the assumption which will be made here to
avoid unnecessary complexity. Under this assumption the state vector may be

redefined as

(OX
AY

aY = (33)

AV e

AI-LE

AV Y
CARppy J

il
Ny

x*

With ©* also suitably redefined for the reduced system, the system
equation becomes

x*(t) = O*(t,t0)x*(to) (34)

where there is now no input or forcing function. The estimation equations become
RE1 () = O* (gt )RE . (Byey) (35)
xX (o) = 2 () + Ky [y(ty) - H(e)RE_ (1) ] (36)

where H 1is the portion of M not related to observation errors. The weighting
matrix and variance equations are now

Py (By) = O*(by,tpm1) Preoq (byeay) ¥ (ty b ) (37)
K(ty) = P_ () HE () [E(t) Be_y(tx) H () + Q)17 (38)
Pr(ti) = [T - K(ty) H(ty) ] Pr-1(tx) (39)
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where it is noted that the effect of the forcing function u(t) does not appear
in the variance equation, (37), as it did before, but must appear as Q in
equation (38) as shown.

The H matrix is defined by the relation

y = He* +n (10)

where n = I'w is the additive observation error. If we assume observations con-
taining three components o, B, and 7, the declination, right ascension, and
subtended angles of the observed planet (as in ref. 1), illustrated in figure 1,
the H matrix is a 3X9 as follows:

(2 % % o o o o o a7
ox dy oz OREM
_{ op ! OB OB
H = = == == 0 0] 0 0 0 41
Ax ay oz SREM ( )
2 2 o o o o o
_Ox oy oz OREM_|

The zeros in H mean that the o, B, 7 do not depend on the vehicle velocity or
upon  Hp and Hy. Also, if the observation is of the Earth, the angles do not
depend upon Rpy. However, the Moon angles oy, BMs, M do depend on RpM-.
Analytic expressions for the required partials are given in table IT.

For the computation of equation (37) the transition matrix is required.
This differs from the transition matrix used in references 1 and 2 by inclusion
of the effects of the astrodynamic constant uncertainties. The development is
parallel to that given in reference 1. The linearized system equation (34),
written in the differential equation form, is

x* = Fx* (42)

which, partitioned into position, velocity, and astrodynamic constant uncertainty
portions, is

r 0 I 0 r
vy = | @ 0 E v (43)
& 0 0 0 e

The null matrices in the bottom row mean that e 1is constant (i.e., & = 0). The
G matrix may be termed the "gravity gradient" matrix, which consists of the par-
tials of the gravitational forces acting upon the vehicle with respect to the

vehicle position components. Similarly, the E matrix consists of the partials

15



of the gravitational forces with respect to the astrodynamic constants. Analytic
expressions for these partials are readily computed from the equations of motion.

The transition matrix can now be obtained as the solution of the matrix
differential equation :

* = FO¥ (4h)
where
0 I 0
F=|G 0 E
o) 0] o)

Initial conditions @*(tk_l,tk_l) = I are introduced at time ty_, and equa-
tion (44) is integrated until time ty to obtain ®*(ty,t,_,) for use in
equation (37).3

The guidance equation.- As in the case of the estimation computation, the
guidance computations will be different from those given in reference 2 to
include the effects of the new state variables. As before, we presume the use of
a fixed-time-of arrival guidance law, in which the estimated end-point miss is
computed and then a velocity correction computed to null this miss. The end-
point miss estimate is given by

A Ia
X*(te) = q)*(te:t)x*(t) (45)
where inpartitioned form &*(t.,t) may be written
Al A2 AS

P*(tg,t) = Az Ag Ag (46)

0 0 , I

Each Ai submatrix is a (3X3). The upper left (6X6) is the original prediction
matrix of reference 2, and the added rows and columms result from the astro-
dynamic constant uncertainties. The Ag is the matrix which relates position
deviations at the end to errors in the astrodynamic constants, and Ag similarly
gives the velocity deviations. The null matrices mean that the e vector is not
affected by position and velocity deviations, and the identity matrix means
simply that e 1s constant.

3It may be noted that, alternatively, equation (37) may be solved for P by
integrating the differential equation

P = FP + PFL

which does not require @%* at all. However, in our application 9* is used as
part of the guidance law and its separate computation is expedient.

16



Now, if it is desired to null the indicated end-point miss, given by
A
Po = [A1 A Aglx* (k1)
we must add a velocity increment vy such that

?‘e + A2VG =0 (11-8)

where Agvg gives the effect on the end~point position of a velocity change wvg
at the present time. From equations (47) and (48) we then have

ve = -Ax"Y [A; A ASTR* (49)

which is exactly the same as given in reference 2 except for the addition of Ag
and e. In other words there has been added to vg the term -Ap™?% Ay & which is
the velocity correction necessary to null the miss implied by the estimate 8.

Of course, if the estimated errors in the astrodynamic constants are quite small
(as they usually would be), the added term has negligible effect on the computa-
tions. However, it is included here for completeness.

Guidance system performance statistics.- Assessment of the statistical
performance of a complete guidance system generally requires the computation of
the covariance matrices of each of the three random variables x, ¥, and X. Each
of these is in some sense a measure of the performance of the system. The quan-
tity x 1is the deviation from nominal and thus at the end point can be inter-
preted as the "miss" experienced. The estimate, ¥, is used to compute midcourse
maneuvers, hence, is a measure of the fuel used in these maneuvers. The estima-
tion error, x, which exists at completion of the midcourse task is the initial
uncertainty with which the subsequent guidance mode (e.g., atmospheric entry
guidance) must cope.

Equations for computing the covariance matrix of X have already been given
in the development of the estimation system. We need to add to these the equa-
tions required to compute the covariance matrices of x and 2. These will differ

slightly from the versions given in reference 2 to take into account the effects
of the uncertainty e.

For periods between velocity corrections, the deviation covariance matrix is
obtained by computing

W(t) = BEx*(t)x*T(t)

O*(t 55 )W(t0 ) 0¥ (t,t0) (50)
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(The covariance matrix of x is available as a submatrix in W.) When a
velocity correction is made, a step change in W occurs. The reguired equation,
derived using the methods of reference 2 (appendix D), is

We = C(W - P)cT +P +8 (51)

where W, 1s the covariance matrix after the correction, S 1s the covariance
matrix of correction error, and

I 0 0
¢ = -AsTLA, 0 -As" LA (52)
0 0 I

written in partitioned form.

The covariance matrix of the estimate is obtained irn the following manner.
Since the estimate and error in estimate are orthogonal (i.e., EXXL = 0) for an
optimal estimate (see ref. 4), we have, from the relation x =& + X,

ExxT = 23T + EXXT (53)
oY
BT =v =W -P (5k4)

Thus, with P and W as computed from the previously developed equations, V is
obtained directly by use of equation (54).

Compensation for Mixed Bias and Random
Observation Errors

In this section a more complex model will be assumed for the observation
error than has heretofore been considered. The astrodynamic constant uncertain-
ties will be ignored - that is, assumed zero.

Suppose that the observation error consists of two additive components, one
random (uncorrelated from one observation to the next) and the other a bias;
that is, the equation for the observations is of the form4 (compare eq. (13))

y(t) = Ht)x(t) + ni(t) + ns(t) (55)

40bservations are considered to be three—compbneht vééfbfé>aé in reféféhce 1,
but the analysis is easily extended to any other situation desired.
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where

nj a random error with covariance matrix Qi

ns a bias error with covariance matrix Qo

2 a matrix of partial derivatives of observables with respect to state
variables

The differential equations of the ni and np processes are assumed to be given by

Fa(t)n(t) + ui(t) (56)

n1(t)

|
(@)

o(t) (57)

The solutions of equations (56) and (57) are:

t

01(% b )1 (to) + ft 21(t,7)ua(r)ar (58)

]

ni(t)

no(to) (59)

]

no(t)

The assumption that ni is uncorrelated from one observation to the next implies
that the observations are sufficiently far apart that ®1(tk+l,tk) is for all
practical purposes zero, where 1y, and ty are the times of the k+1 and kth
observations, respectively.

The state vector for the system as here defined is seen to be

x* = nj; (60)
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and the system equation in partitioned form is

x(t) O (t,t0) 0 0 x(to) 0
ni(t) ) = 0 - 21(t,t0) 0 ni(to) ) + (uar'(t,to) (61)
ns(t) 0 0 I nz(tg) 0
x(ty)
y(tx) = [H(tx) I TII{ na(tyk) (62)
no(ty)

where

t
ul'(t:to) = f cI)l(t; T)U-l('l')d'r

to

The equations for optimal estimation are the same as in the problem treated
in the previous section (egs. (24) through (29)), except that here we use a daif-
ferent state vector and suitably redefined XK, P, M, and ¢ matrices. These
equations could be used "as is." However, the assumption that ni: is uncor-
related between observations permits the same type of computation contraction
described in the previous section - that is, the estimation of nj; can be omitted.
The details of this contraction are given in the appendix.

In addition, it is shown in the aprendix how the estimation equations appear
in partitioned form. In this form the additional computations required because
of the more complex (bias plus random) error model are clearly illustrated. How-
ever, it should be noted that implementing the computations in the partitioned
form, where all matrix operations are of order 6X6 or less, is not necessarily
simpler than using the 9X0 format.

Bias Error Off-Design Performance Analysis

No compensation for bias.- Here we are concerned with off-design performance
analysis. The situatlion selected for illustration in this section is one in
which mixed random and bias error exists but the bias error is not accounted for
in any way in the estimation procedure. The problem is to determine what
performance degradation will result.
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In this case it is assumed that, so far as the estimation system knows, only
the uncorrelated observation error exists. The estimation equations are then
those which are optimal for this type of situation - that is, only the estimate
of vehicle position and velocity is formed, and the computed P matrix repre-
sents what the system "believes” to be the statistics of the error in estimating
position and velocity. The equations used for processing an observation are
those which are optimal for an assumed purely random error model (see ref. 1,
egs. (12) through (14)):

%k_ = ?(k-l + K(y - Hﬁk-l) (63)
K =P' _H(HPL_HT +Q)7% (64)
Py = (I - k)P | (65)

and for updating the estimate between observations,

%(tx) = Oty i )% (ty—y) (66)

W

]

P'(ty) = Oty st )P (tye1) @ (b ,tyey) (67)

A prime is used here on P +to distinguish between the indicated error covariance
matrix, P', and the true P.

In order to obtain second-order statistics of system performance we require,
as before, equations for computing the covariance matrices

Exxt =P
ExxL = vV
EXXT = W

The computational equations for W will be the same as those given in the sec-
tion on astrodynamic constant uncertainties, but the equations for P and V will
differ because here the system is nonoptimal. For instance, we note that P is
the true covariance matrix of estimation error as opposed to what the system
"believes" is its performance - that is, P as computed from equations (65) and

(67).

The development of equations for P and V divides naturally into considera-
tion of (1) the computation of the matrices at the times when observations or
velocity corrections are made and (2) the computations which occur in intervals
between these points.
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We begin first with the step changes, and consider what computations are
necessary at the observation times. Using the estimation equation (63) and the
relations

B = x - % (68)

Hx +n3y +ns= (69)

¥
we obtain an expression for the propagation of estimation error when an observa-
tion is processed:
K = [I - KH]Z,; - Klni + nzl (70)
The argument 1Ty, the time of the observation, is omitted from this and the fol-
lowing equations because it is the same for all quantities.

A recursion equation for computing P is developed directly from equa-
tion (70).

Fed = (I - KE _ %y (T - k)T + K(ny +n2)(ny + ng) kT
- (1 - KH)ik_l(nl +no)TKT - K(ny + nz)ii_l(l - k)T (71)

Now mnj; is an observation error uncorrelated with previous values of n; and
therefore uncorrelated with ik_l. Also, ni and ns are assumed uncorrelated
with each other. Thus, taking the expected value of equation (71l), we obtain:

Pe = (I - KEP_,(I - k)T + k(Qy + Q)K"
- - T _ T T
(I - XH)B,_.K KBK_JI - KH) (72)
where Bk-l is defined as the covariance matrix
Bi1 = Eik_anT (73)

- Note that B, gives the correlation statistics of the error in estimate,
Xk -1 and the bias error, np. Obviously, a recursion equation for B, is also
required, which is obtained by multiplying equation (70) by ngT and taking the
expected value:

By = (I - KH)B,_, - KQo (%)
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It is readily seen that if By 1s computed before Py, a somewhat simpler
expression for P, can be utilized; combining equations (T4) and (72), we obtain

Pe = (I - KI)Py_ (T - KE)T + K(Q1 - Q2)KT - BkT - kBT (75)

Since we are interested in the difference between the true and indicated P
matrices, it is instructive to produce another recursion equation for the compu-
tation of this difference matrix, which we might call OP = P - P'. Using
equations (75), (64), and (65), we find quite easily that

8P, = (I - KH)®P,_ (T - KH)T - KQKT - BKT - KBy T (76)

The equation for computing V = ERXT  at the time of an observation is
developed as follows. Since x = X + X, we can write

Exxl = EXRT + ERXT + BXXT + BRXT (77)
Using the letter designation
ExxT =D (78)
we then can write
BT = Ve = (W - B) - (D + DyT) (79)

The Pr and W in this expression are obtained from computations of equations
given previously for these matrices. For an optimal unbiased estimate as
obtained with the system of the previous section, D 1is zero - that is, ﬁk and Xy
are uncorrelated. However, in the present case this is not so, and we must have
a recursion formula for computing D. Using equations (63), (70), and (7k), it
is seen that

Dk = (I - KH)(Dk-1 + Pr-, - BIKT) + K(Q1 - Q2)KT + BKT + KB, T (80)

Other formulas are possible, depending upon what is computed first. For instance,
Dy = (I - KH)(Dy-, + BP,_,) - 8P (81)

which is useful if 8P is being computed (by means of eq. (76)).
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Now consider the second part of the development, which has to do with the
changes in P and V that occur in intervals between observations. The time-~
transition equations to be used for updating between observations are easlly
derived by noting that the estimation error propagates in the same way as does

the estimate (eq. (66)):

x(tx) = Oty sty )%y, ) (82)

Also, np is constant. Thus, we have

P(ty) = O(tysbem ) P(by_y ) O (ty styemy) (83)
BP(ty) = O(tx,tyog)OP(tyc-1) PT(ty,sticny) (8k4)
B(tx) = ®(ty,bk-1)B(ty_y) (85)
D(ty) = ®(tysbiems )D(tremy ) O (bye by 1) (86)

With these equations to obtain P and D, and equation (50) and (51) for W, Vj
is obtained by use of equation (79).

Taken altogether, the foregoing equations give the effect of processing an
observation and of transition between observations, and thus are sufficient for
the complete determination of the statistics of system performance. Initial
conditions for the various matrices are required, of course. If the problem
begins at injection into the translunar trajectory, then P(to) may be the covar-
iance matrix of injection errors. The matrix B(to) will be zero because the
initial estimate is by assumption not dependent upon the bias error, ns. The
D(to) matrix will be zero if the initial estimate is optimal; otherwise, some

other value must be used.

Partial compensation of bias.- In this section we will consider a design
compromise in which the bias error is compensated but not in the optimal fashion
described earlier. This might be called a partial compensation. The idea to be
developed here is (1) to use the simple no-bias estimation equation

A

A.—
X=Xy,

+Kly - Ht ] (87)

where no estimate of the bias is formed for estimating x (cf. eq. (25)), and
(2) to find the K which is optimum for the use of this equation. The estimate
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formed in this way is optimum in a sense but is not unbiased. Thus, the rms
estimation error should be larger than that of the unbiased estimate.

To find the optimum K we may use a varilational technique, proceeding as
follows. The recursion relations for the estimation error covariance matrix are
given by equations (72) and (83), repeated here for convenience:

P = (I - KE)Pe- (I - KH)T + K(Qy + Q2)kT

- (T - kDB _ KT - kB (I -xH)T &t tx (72)

P_y (i) = ®(tx,ty -2 )Pa (o) 0T (e sty ) (83)

Following the common procedure, K 1is chosen to minimize the expected squared
error in estimating some linear function of x. (For instance, it may be desired
to minimize the mean-square error in the estimate of the end-point miss.) If

7z = {x 1is the criterion vector whose mean-square estimation error is to be
minimized, we observe that since after k observations

N2
|

= 0% (88)

we wish to minimize the functional

tr(EZzT) = tr(apaT) (89)

Substituting into (89) from equation (72), we then let X = Kopt + 7Ki, where
Kbpt is the optimum weighting function, K; is an arbitrary matrix of the proper
dimensions, and 1 1is a scalar Lagrangian multiplier. Then, differentiating
with respect to mn, letting 1 go to zero, and setting the resulting expression
equal to zero, we obtain:

tr { Q[Kbpt(HPk_lHT +Q1 +Qz +HB _, + BE_lHE)

- (P _,HY + B, )k, TT} =0 (90)
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Since £ is not zero and KTl is arbitrary, this expression can be zero only
when

Kopt, = (Po1BT + By )(HP, BT + Q) + Qo + HBy, + BF_#D)™ (91)

Using the value of X given by (91) in equation (72), we obtain as the
recursion equation for computing the change in P when an observation is
processed:

T
P = Peoy ~ K(HP,., + By ;) at ty (92)

Equations (91) and (92) are seen to be quite analogous to the no-bias
optimal equations, the difference being that the covariance matrix B must now
be computed. Equations (74) and (85) given in the previcus section serve this

purpose .

It will be noted now that a system designed in the manner described here is
not really much simpler than the true optimal system because of the necessity of
computing B. This is seen when equation (91) is compared with equation (A2h)
and observing that By_, is defined identically with the Pxn2 of equation (A24),
and P, 1is equal to Qg if the estimate of np is always taken to be zero. Thus,
with th& computation of B implemented, all the information necessary to form a
truly optimal estimate is available and requires only a few extra matrix multi-
plications and some additional computer storage. For this reason, this type of
restricted-optimal system is considered to be of little more than academic
interest and its study will not be pursued further.

RESULTS

Compensation for Astrodynamic Constant Uncertainties

A digital computer program was written to simulate the guidance system
design described in the Analysis section for optimal compensation of the astro-
dynamic constant uncertainties, Aup, Apy, and ARpy. Results obtained using
this program are reported in this section.

The situation simulated was the same as that employed in references 1 and 2
and may be described as follows. It is assumed that a space vehicle is injected
onto a circumlunar trajectory, the rms injection errors being one kilometer in
position and one meter per second in velocity along each of the three axes of an
earth-centered nonrotating coordinate system. The trajectory passes at a dis-
tance of 4766 km above the lunar surface after about 3-1/4% days of flight and
returns to a reentry corridor after 6-1/2 days.
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Observations made during the flight are assumed to consist of the simultane-
ous measurement of three angles, the declination (), the right ascension (B),
and the half-subtended angle (7) of either the Earth or the Moon as seen from the
vehicle. The geometry is illustrated in figure 1 for Earth observations. No
attempt is made to describe an instrumentation system which could make such mea-
surements, the assumption being simply that the system is subject to random
gaussian errors added independently to each of the three angle measurements. The
standard deviation of the errors is assumed to be given by the formula

onp =~N100 + (0.0017)2 sec arc (93)

where 7 1s the half-subtended angle of the body being observed, expressed in
seconds of arc.

Three different schedules of observations and velocity corrections were
employed. The first is the schedule described in reference 2 which consists of
426 observations on the outgoing leg of the trip, and three velocity corrections.
The measurements alternate, in groups, between observations of the Earth and the
Moon. Only the first half (i.e., the outbound portion) of this schedule was used
here.

The other two schedules employed are a "short" schedule having only 80
observations during the entire 6-1/2-day flight, and a "long" schedule with a
total of 400 observations. Five velocity corrections are assumed. These sched-
ules are shown in figures 2 and 3, which are plots of the nominal trajectory with
the times and type of observations indicated. The times of the five velocity
corrections are shown as circles on the trajectory. These schedules are the
result of a scheduling quasi-optimization, the discussion of which is beyond the
scope of this report.

It should be noted that observations on the short schedule are always spaced
at least 30 minutes apart, whereas on the long schedule observations are 6 min-
utes apart during each observation period. There are several fairly long periods
of time in each schedule during which no observations are made.

For assessment of the performance of the over-all vehicle control system, it
was necessary to simulate random errors in the implementation of the velocity
corrections. These were assumed to be represented by a O0.5° rms pointing error
for the rocket engine and 0.1 m/sec rms error in the magnitude of the correction.
It was assumed that the corrections were monitored with an accuracy of 0.0l m/sec
in each of three orthogonal inertial coordinate directions.

The astrodynamic constant uncertainties Apg, Ay, and ARpy were assumed
normally distributed and independent, with zero means and standard deviations as
given in table TI.

Miss at the Moon with no guidance.- From a run of the computer program in
which no observations or velocity corrections are made, the transition matrix
from injection to perilune passage, ®*¥(t,,ty), is obtained. The elements of this
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matrix are the sensitivity coefficients which give the miss at the Moon for unit
initial errors in the position and velocity components and the astrodynamic con-
stants. Using this matrix and assuming that the rms values of the astrodynamic
constant errors are the values given in table I, we can compute that the rms miss
at the Moon due to these errors is about 202 km in position and 13.6 m/sec in
velocity. By far the greatest portion of these errors is due to Apg.

For comparison, it might be noted that the miss due to the injection errors
assumed (1 km and 1 m/sec in each direction) is 2660 km and 161 m/sec rms. Most
of this miss is due to the injection velocity error.

Effect of the uncertainties on performance, with guidance.- The effect of
the astrodynamic constant errors on system performance was measured by comparing
computer runs made with and without the assumption of errors in the constants.
Some of the results of these runs are shown in tables IIT and IV which give rms
performance at perilune and at perigee, respectively.

The first five lines of table IIT show perilune performance with the 426-
observation schedule of reference 2 for conditions of no errors, pg error only,
My error only, REM error only, and all three errors, so that the individual
effects of the separate errors can be ascertained. The runs made with the other
schedules were all either with or without all three errors.

The data in tables TIT and IV can be summarized as follows:

(a) At perilune the uncertainties, r and v, are increased roughly 2-1/2
times by the astrodynamic constant errors when the reference 2 and long schedules
are used. The percentage degradation for the short schedule with only 45 obser-
vations 1s a bit less primarily because the T and v are already larger on
account of the fewer observations. However, the total degradation is greater for
fewer observations because the astrodynamic constants are estimated more poorly.
It is seen that T 1is mostly affected by the Ry error, and v by the py
error.

(b) The miss quantities rp and r at perilune are roughly doubled by the
astrodynamic constant errors, but v 1is increased only 27 percent. The Rpy
and My errors produce most of the Tp variation, and the Wy error produces
most of the r and v increase.

(¢) At perigee the degradation in performance is quite small, typically
about T percent, except that perigee variation is almost entirely unaffected.
Thus, what variation occurs is principally in time of arrival. The small loss in
performance compared to performance at perilune is probably due to the fact that
performance is already quite a bit poorer at perigee than at perilune even
without the astrodynamic constant errors.

(d) The total applied AV is virtually unaffected on the outbound leg,
what little increase there is being mostly due to AQup. On the return leg there
is an increase of about 20 percent which is due primarily to the increased v at
periiune.
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Estimation of the asgtrodynamic constants.- An interesting by-product of the
study described here is the improvement in knowledge of the astrodynamic con-
stants as a result of incorporating them in the estimation process. The standard
deviations of the errors in knowledge of WE, My, and Rpy are obtained directly
from the P matrix. These are tabulated in table V. It is seen that only uy,
the most poorly known of the three constants percentagewise, is refined signifi-
cantly. An improvement of about 5 or 6 to 1 is obtained even with relatively few
observations (80 to 400) made using the short and long schedules during the cir-
cumlunar flight, whereas ug and Rmy can muster only 15 and 8 percent
improvement, respectively.

Table V also shows that if only one constant is being estimated and the
others are assumed known perfectly, then the indicated standard deviation of the
error in estimate is smaller than when all three constants are assumed in error.
This illustrates an important point; namely, that if in an error analysis some of
the error sources are unaccounted for, the final estimate of the error statistics
will always be optimistic (i.e., too small). Thus, it is well in cases where one
1s not sure all the errors have been adequately described to take a pessimistic
view of the results obtained from the study.

Compensation for Mixed Bias and Random Observation Errors

The situation simulated for this study is the same as that employed in
reference 1. The mission and injection conditions are the same as described in
the previous section, but only the first few hours of flight are considered. The
observation schedule consists of a sequence of observations of the Earth, start-
ing one-half hour after injection, spaced 6 minutes apart for 2 hours. The situ-
ation is illustrated in figure 4. The uncorrelated observation errors assumed in
the study have a standard deviation of 20 sec arc, independent of range, for each
of the three measured angles. The bias error assumed has a standard deviation of
5 sec arc.

A digital computer program was written to implement the equations for esti-
mating bias error developed in the Analysis section of this paper. Runs were
then made simulating the situation described here, with bias on only one of the
three angles at a time, for the purpose of identifying the effects of the
location of the bias error.

Figure 5 shows the time history of the rms errors in estimating the vehicle's
position and velocity, with and without an assumed bias on the half-subtended
angle, 7. The difference between the two cases is seen to have increased to
about 10 percent at the end of the observation period. Similar runs made with
bias on the declination angle, «, and the right ascension angle, B, showed a
nearly negligible effect (no more than 1 percent) due to bias, and these results
are not shown.

In figure 6 are shown the time histories of the rms errors in estimating the

biases for each of the three situations. It is seen that the estimstes of o
and B bias are improved scarcely at all by the 20 observations, whereas the
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estimate of ¥ ©bias is ilmproved about 25 percent. The conclusion drawn from
these results is that the observations assumed contain some information regarding
7 bias but practically none regarding o and B bias.

Besides computing the statistical results given above, the computer program
simulates an actual flight, with randomly selected injection errors and observa-
tion errors. The injection errors assumed for all the runs described here are:

X1 = 0.495 km

X = ~0.886 km } position components
Xg = -1.001 km

x4 = 0.281 m/sec

Xs = 1.999 m/sec } velocity components
Xe = 0.194% m/sec

The random observation errors assumed are shown in figure 7. Time histories of
the errors in estimating the position error r and the velocity error v are
shown in figure 8 for three situations: (1) bias of 5 sec arc on 7 but estima-
tion of the bias not implemented, (2) bias of 5 sec arc on 7 with estimation,
and (3) no bias and no estimation thereof. It is seen that situation (1) gives
the poorest results, as expected. Situation (3) of course gives the best results,
and situation (2) generally lies between (1) and (3), being near (1) in the early
part of the observation sequence, and tending to approach (3) at the end of the
sequence as the estimate of 7 bias is improved. Similar runs using o and B
bias showed that the effect of these bilases is negligible.

The corresponding time history of the 7 bias estimate is shown in figure 9.
Also shown are the time histories of o and B bias estimate for identical runs
in which o or B bias was assumed instead of 7 bias. The o and B bias
estimates are seen to be essentially zero, reflecting again the fact that the
assumed seguence of observations contains little information about these random
variables. The 7 estimate on the other hand shows substantial fluctuations.
In the early part of the observation seguence the estimate is seen to be negative
even though the actual bias is positive. This behavior is readily traced to the
nature of the particular injection errors employed in this study. These errors
cause the vehicle's distance from the Earth to be greater than nominal for all of
the observation period. For instance, at the time of the fourth observation, 48
minutes after injection, the range is 8 km greater than the nominal 19,825, so
that the half-subtended angle 7 1s 30 sec arc smaller than the nominal. So far
as the instruments are concerned, it makes no difference whether this deviation
of 30 sec arc is due to injection errors, bias, or random measurement error. The
data-processing system of course apportions the difference among the various
sources according to its knowledge of the statistics of the various errors.
Since the actual deviation is negative, the system tends to estimate that all the
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error sources are producing negative error even though in this early part of the
flight both the bias and random errors (see fig. 7) are actually positive. ILaten
as more data is accumulated, the system can more accurately apportion the errors,
and the 7 7Dbias estimate becomes positive.

It might be noted that the bias error is never known very well (see fig. 6)
during the simulated observation period, so the rather good estimate late in the
observation period must be regarded as somewhat fortuitous. This behavior can be
explained by the character of the particular sample of random ¥ error used in
the run, which happens to be substantially biased (see fig. 7); the mean value of
the random error for the first 14 observations is 8.5 sec arc. Thig is not to
say that the particular sample employed is highly extraordinary - it is no more
unlikely for instance than a run of heads in tossing a coin. Nevertheless, the
biased sample does have a typical effect on the estimation process. In the first
place, it tends to be interpreted by the system as a bias error and results in a
bias estimate larger than would normally be expected, as already noted. In the
gsecond place, it can also appear to the system to be the result of injection
errors since these produce a bias-type deviation from nominal. The errors in
estimating vehicle position and velocity thus tend to be larger than normal when
such a sequence occurs. This effect shows quite clearly in figure 8, where it is
seen that for the first eight observations the estimates with bias estimation are
actually poorer than the estimates obtained with bias estimation omitted.

Bias Error Off-Design System Performance

For the study of off-design performance the situation simulated was that of
the complete circumlunar mission described earlier. Three-angle observations
(e, B, and 7) were assumed as before, corrupted by random errors (i.e., uncorre-
lated from one observation to the next) and also bias errors. The trajectory
estimation system employed was optimal for the uncorrelated errors only - that is,
it was assumed that the presence of the bias error was unrecognized.

To obtain numerical results, the equations for off-design performance given
in the Analysis section were implemented in a digital computer program. Runs
were made with the short and long schedules shown in figures 2 and 3, with uncor-
related observation error having a range-dependent standard deviation as given by
equation (80).

Biag error was assumed to have an rms value of first 5 sec arc and then in
later runs 10 sec arc. This error was applied in some cases to all three angles
and in other cases separately to each of the angles «, B, and 7 to ascertain
the effect of location of the error. To avoid excessive complexity, it was
assumed that the same bias exists on a particular angle measurement (e.g., a)
whether this angle is associated with a Moon or an Earth observation. This is
probably not a particularly realistic model for bias error, but it should suffice
to gilve some general results regarding the effects of bias.
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The gross effect of bias on the estimation system is shown in figure 10,
which shows the time histories of the rms errors in predicting the end-point miss
for situations of no bias, 5 sec arc bias, and 10 sec arc bias on all three
angles. The short observation schedule (80 observations) was used for these runs.
For the first part of the flight, the end point is defined as the time of nominal
perilune - that is, the figure shows the rms error in predicting the vehicle's
position at the time of nominal perilune. For the last part of the flight the
end-point is the time of nominal virtual perigee. The data shown is correct only
at the times of the observations; the lines connecting these data points are used

only for clarity-.

It is seen that the bias has a substantial effect on system performance, an
effect which increases rapidly as the bilas increases. The effect is distinetly
different in different portions of the flight. It is of particular interest to
note that with bias present the rms prediction error actually increases when some
observations are made, whereas if an optimal data processing system were employed
this quantity would always decrease. The physical interpretation of this phenom-
enon is that too much weight is being given to the observations because the sys-
tem believes the observations to be more accurate than they really are. In some
instances the error introduced in this manner is, statistically speaking, greater
than the reduction in error obtained by utilizing the information in the observa-
tion, and the rms prediction error experiences a net increase. Apparently, it
would be better not to use such observations at all, but under the assumed cir-
cumstances the system has no knowledge that the bias errors exist and therefore
has nc basis upon which to make a decision as to the appropriateness of the

particular observations.

Shown in figures 11, 12, and 13 are the effects of bias on only one angle at
a time, the bias level being 10 sec arc rms in each case. It is seen that 8
bias has by far the most pronounced effect, accounting for virtually all the per-
formance degradation observed in the case of bias on all three angles. The ¥
bias is seen to be quite unimportant and the o bias of some importance. This
result is consistent with the results of other unreported studies which have
shown that angle measurements in the plane of the vehicle trajectory yield the
most navigation information. Since the plane of the trajectory used in this
study is close to the reference equatorial plane, B 1is essentially an in-plane
angle. Thus, B measurements receive the most weight in the processing of data,
so that unrecognized errors in B will produce the greatestv performance

degradation.

For o measurements, bias appears to have the most detrimental effect in
the middle regions of cislunar space. For [ measurements, the effect of bias
is grestest when B measurements are being made of the more distant of the two
bodies (Earth and Moon). For 7 measurements the greatest effect of bias occurs
close to Earth or Moon when the near body is being observed. This is consistent
with the results of the previous section where only observations of the Earth in
the early part of the flight were considered, and 7 bias was seen to have a

predominant effect in this region.
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The preceding results have shown the degradation in system performance which
occurs either when an unrecognized bias error exists or when the existence of a
bias error is known but ignored in designing the system. If the situation is the
former then the results given are simply an off-design performance analysis.
However, if the situation is the latter, the question arises as to whether the
system design can be altered, without increasing its complexity, to reduce the
performance degradation. A simple remedy that may be considered is to assume
that the random error is larger than it actually is, which means merely using a
larger Qi matrix in the computations. The logic behind such a design compromise
is that if a larger Qi matrix is used the P matrix computed in the estimation
process is not reduced so rapidly as observations are made. The system then pays
more attention to later observations than it would otherwise so that the false
information in early observations is not so damaging to the performance.

To illustrate this principle, a computer run was made in which there was no
bias error (i.e., Qo = 0) but Q1 was increased so that the basic random error
assumed was 20 sec arc. That is, the standard deviation of random observation
error is given by the formula

oy = J(20)2 + (0.001 7)2 sec arc (9k)

rather than the expression given earlier (egq. (93)). The rms prediction error
for this run is plotted in figure 14 together with the uncompensated 5 arc sec
bias run repeated from figure 10. Tt is seen that the performances for these
two situations match fairly well. That is, the performance of a system with no
bias and properly compensated basic random error of 20 sec arc (eg. (94)) is
similar to the performance of a system with uncompensated 5 sec arc bias and
properly compensated basic random error of 10 sec arc (eq. (93)).

The next step would be to try using Qi as given oy equation (94) in the
bias error situation, which should improve the performance some. No results have
been obtained to show the amount of improvement, but it is expected that the per-
formence would be about the same as that of an optimal system with a basic random
error of 15 sec arc.

When the long schedule (a total of 400 observations) is used instead of the
short schedule, a more severe degradation in performance is produced by uncom-
pensated bilas. This effect is shown in figure 15, which shows the performance of
the estimation system using the long schedule for no blas error and for 10 sec
arc bias. Tt is seen that the degradation due to bias is so severe, that the long
schedule with bias actually has poorer performance than the short schedule with
bias (except in the region near perilune). The reason for this is that the P!
matrix becomes small much more rapidly in this case than with the short schedule,
and the erroneous information obtained from the biased early observations has
less chance of being corrected by the subsequent observations. As in the case of
the short schedule, increasing the size of the Qi employed in the computation
should improve the performance, perhaps substantially since the bias-produced
degradation is so large.
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The ultimate measures of the performance of the guidance system are the end-
point miss and the total velocity correction employed (which is equivalent to
fuel required). For a guidance system employing the estimation scheme which has
been described these quantities are given in tables VI and VII. Results are
shown for each of the bias conditions considered. The guidance law used for com-
puting the welocity corrections is the same as described earlier in reference 2
(using fixed-time-of-arrival principles), each correction being computed from the
estimated state vector at the time of the correction. FErrors in implementing the
velocity corrections were assumed to be 0.1 m/sec in magnitude and 0.5° in direc-
tion, rms. Five corrections were made in each run, three on the outbound flight
and two on the return. The time schedule of corrections, shown in figures 2 and
3, 1s slightly different for the long and short observation schedules.

The rms miss data in tables VI and VIT is given in terms of the total
position and velocity deviations from the nominal trajectory at the perilune and
perigee end points. The rms variations in actuval perilune and perigee distances
are also given, the latter being significant for indicating the probability of
safe atmospheric entry in terms of the corridor concept. It is seen that the
perigee deviations for all situations are sufficiently small to virtually insure
safe entry. Since perigee and perilune deviations are quite small compared to
the total position deviations, the indication is that most of the miss occurs
along the flight path - that is, the miss is mostly a deviation in the time of
arrival at the end point. The velocity deviation at perilune is mostly a devia-
tion known to the guidance system since the velocity uncertainty (i.e., the rms
error in the knowledge of the velocity) is seen always to be an order of magni-
tude smaller than the deviation. This occurs because the guidance law employed
corrects only the end-point position deviation, leaving a known but uncorrected
velocity deviation. The perilune velocity deviation must, of course, be corrected
on the return leg of the flight since it produces an end-point position deviation
at the Earth. This accounts for a large part of the AV required on the return
leg. The velocity deviation at the Earth end-point can be regarded as a devia-
tion in reentry velocity which is an initial condition for the terminal guidance

system.

The differences in miss and AV performance for the different blas assump-
tions are seen to be very nearly the same as the difference already illustrated
in the time history plots of prediction uncertainty, figures 10-1%. For the
short schedule the 10 sec arc bias produces a 40O- to 50-percent increase in peri-
lune position deviation and AV. The velocity deviation at the Moon is doubled.
At the Earth end-point the miss has been nearly tripled but the perigee altitude
deviation is increased only about 25 percent. The return AV 1is up 85 percent,
principally because of the substantial increase in perilune velocity deviation.

For the long schedule, position and velocity deviations at perilune are
tripled by the 10 sec arc bias but perilune altitude deviation is up only
slightly, and AV 1is increased 65 percent. For the return flight, end-point
position and velocity deviations are increased roughly six times and AV is
almost tripled, but perigee altitude variation is merely doubled, so that safe
reentry could still be effected. Note that perigee end-point conditions and
total AV for the long schedule are worse than for the short schedule with bias
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indicating that there would be no point in using the long schedule in the
presence of such a bias unless the system is modified in some way to take the
bias into account.

CONCLUDING REMARKS

Equations have been developed which show (l) how to include astrodynamic
constant uncertainties and bias-type errors in the estimation process, and (2)
how to compute the performance of a system subjected to unrecognized or ignored
bias errors. The demonstrated techniques can be extended in a more or less
obvious manner to handle any type of error model desired in the estimation pro-
cess, and to treat many other types of off-design analysis problems. In princi-
ple, extending the estimation process tc more complicated error models requires
augmenting the state vector with additional error components. For the analysis
of off-design performanci it is seen that one must in general arrange to compute
the covariance matrix EXxT, which is zero for optimal estimation but not so for
off-design situations.

The numerical results given in the report show that the astrodynamic con-
stant uncertainties affect system performance in only a minor way. Nevertheless,
this type of secondary error source does distinctly limit system performance at
the lower end and must be given thoughtful consideration when quoting performance
capabilities.

In regard to the effects of bias errors, an exhaustive analysis has not been
attempted. However, the numerical results indicate that bias can be expected to
have approximately the same effect on system performance as uncorrelated errors
of the same magnitude. Also, the indication is that use of a suitable uncorre-

lated error model as an approximation to the true model will yield adequate
though not optimum results.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Oct. 2, 1963
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APPENDIX

CONTRACTION OF THE ESTIMATTION EQUATIONS FOR UNCORRELATED OBSERVATION ERRORS

Estimation of the Astrodynamic Constants

The estimated state vector is defined as

N
X
R* = (8 (A1)
A
W
and the extrapolation of the estimate from the time of one observation to the
next is of the form
% Oy Pxe O 2
2) = | o T 0 & (A2)
A N
L 0 0 o W byemy
The assumption that the errors in successive observations are uncorrelated is
equivalent to assuming ®w = O in equation (A2); that is,
A
Wk—l(tk) = CDW(tk)t‘k-l)"/‘\T'_]:g-;|_(.t'k'-l) =0 (A3)
Thus, equation (A2) can be contracted to the form
2 Dyx  Oxe| | X
é "o I & ()
tx tx-1
For processing the kth observation, the equation is
& EN Ky &
8 = (%8 + | Kq y-[H 0 rJ’é (A5)
o N K )
Yk Y k-1 w Y k-1
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Since # for use in (A5), as determined by (A3), is zero, equation (A5) is

% % Kx
A A A
g = (e +| Ko | (y - HXp_q) (A6)
A
W X 0 k-1 Kw
from which it is seen. that
{'\‘Tk = Kw(y - H-}/ék—l) (A7)

However, since the next application of equation (A3) will result, by assumption,
in We4,(tx) = O, there is no purpose to implementing equation (A7), and (A5) may
be contracted to

>
K>

Xx
. = R + (v - Hﬁk-l) (48)
€l elk-1 Ke

A similar method of analysis can be applied to the computation of the
weighting matrix, K. For updating the P matrix between observations, we have

Px Pxe Py Oxx Oxe Y Px Pxe Pxw

Pex  Pe Pew| =10 I 0 Pex  Pe Pevr

Pux Pye Py _Jty Y Y Oy Purx Pye Py tyoy
el o o o 0 0
of, 1 o |+|0o o o (A9)
0 0 oL o o u
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If &, = 0 for uncorrelated observation errors, then it is readily seen that

S

QXXPX(tk-l)QEX + QxePe(tk—l)Qge + cI’xePe:»c(tk-:L)q’:rjgx

I}

Px(bk)
+ O Pyel(t )@I
XX+ Xe K=-1 Xe

Pyeltk) = ®yxPxre(tx-1) + OxePe(tk-1)

(A10)
Pe(tk) = Peltk-1)
Py(tx) = U
Pyyr(tr) = Pewlty) =0 )
For the computation of X(tx), we then have
Py Pre O BT
T _
vl = [H 0 Tl | Poy  Pe 0 0
T
0 0 U by T
= [EP,HT + TUrTT] (A11)
Then
Kx F—PX Pxe 0 HT
Ke | = Pex  Pe 0 0 [P, HT + TUrIT]™
K Lo 0 utly, LIT
_PXHT
- PexHT [HPXHT + Q]'l (Alg)
bU'FT
where
Q = rurrT
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Finally, the change in P when the observation is processed is

AP = Pk"l - Pk = Mk_l

Ky Py Pye! O
i
=| K |[E 0 T]| Pex Pe !O (A13)
K, 0 o ., U

tk

Because of the null submatrices in P(tk), the portion of AP related to the

observation errors (to the right and below the dotted lines) is uncoupled from

the rest of AP. Since this portion of AP is not needed, and since Ky 1is
not needed, equations (A9), (A12), and (Al3) may be contracted as follows:

T
PX Pxe Oyx Oye Py Pxe Pxx 0
- (A1k)
Pex Pe tye 0 I Pax Pe e L e I
Kx Px -
= HT[EPHT + Q)% (A15)
P,
Ke ex tk
AP AP K P P
b'd xe X X Xe
= [H 0] (A16)
APey APg Ke Pex Fe |ty
Estimation of Mixed Random and Bias Observation Error
The estimated state vector is defined as
A
bld
¥ = ?ll (Al7)
N
no
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and the extrapolation from the time of one observation to the next is of the form

P % 0 0] |%
A1 ={o o1 o0](n: (A18)
A A
0] 0] I n
2 tx 2 Tk-1

Under the assumption that the mnj error in the kth observation is uncorrelated
with that in the (k-1)st observation (i.e., ® = 0), equation (A18) can be con-
tracted to

% o, 0 |%
N = . (419)
For processing the kth observation, the contracted equation is
A A Fa
X X Kx X
= + y - [H + I] (A20)
A A * n
nNo k No | k-1 Kl’l2 No | k-1
For updating the P matrix between observations we have
i . o, P,
Px Pyny Prns x O 0 X X1 XMy
Pnlx Pn, Prlln2 = |0 ¢, O Pnix Pnl Pnlrl2
P P
~-Pnzx Poon,  Png I f 0 ZEd __Pnzx neny  tne [,
6, T 0 0 0 0 0
0 0,T ol+ 1|0 Ut 0 (A21)
0 0 I 0 o) 0
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where U' is the covariance matrix of ut(ty,tx-q). If &, = 0, then it is seen
that

0, Py0xT O D Pym
P(te) =| © Qe O (A22)
T
Poxx O P, .

Here, U' has been replaced by Qi which, because of the assumption of uncorre-
lated observation error, is dependent only upon the time of the present observa-
tion and can be a stored quantity.

For the computation of X(ty), we then have
Py O  Pxng ul

Ml = [ I Il o0 Qi O T

= (HRET + Py H + HP,, + Py + Q) (A23)
Then
Ky Py O Pyn | [H
Knl = 0 Q1 0 I [A]
Khz Pnzx ° Fn, 1

(PxT  + Pyny)
= (Q1) [A] (A2k)

(Pp xHT + Pp)
- -

where A = (MPMT)™? from equation (A23). Finally, the change in P when the
obgervation is processed is
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AP:Pk-—l-Pk:K:M:P

K-?( PX 0 P:an
=| Ky, |[E I I1]0 Q1 0 (a25)
Kn, Pngx O Pny

Since Xp, is not needed, it is seen that equations (A21), (A24), and (A25)
can be contracted as follows:

P, Pn_ o, O |Py Pan oxT 0
= (A26)
Pagx  Pn e O I|{Pox P, [t,|O I
Ky PyET + Pyn
- (4] (827)
K P + P
n > n2X n
B n 7 - 7
AP, APyy, K, P, Pyn_
= (B 1] (A28)
AP
n_x AP n, Kn2 Pn x Pan e
— — - =J —
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TABLE I.- ERRORS ASSUMED

Error Magnitude Percentage Max gAif(ig)
Apg +9X10° m3/sec2 0.002 2X1075
Ay | £3X10° m3/sec2 .06 1X10~4
Dpg thx1016 ms/;eCZ .03 9><'1'o>'l°
ARpy 2 km 0005 | 3.7x107%
ARgg +Ux10% m .03 C 1.9x10°°
AT £5%X10°8 .003 LL>.745;<"1‘015W




G

TABLE II.- H-MATRIX PARTTALS

3 3 > 2
oX oY o7 ORmm
XgyZEy TryZEy | Zmy® " Bgy® | 0
o
E
REVZ(XEV2 + YEvg)J./z REVZ(XEVZ + YEVZ)l/Z, REvz(XEVZ + YEV2)1/2
-Y X
b T - 0 0
XEV2 + YEV-2 XEV'2 + YEV
|
, ~ReXgy Rgigy | ~Rrlry o
E 2 1/2 2 _ 2y1/2 1/2
REVZ(REV _ REE) / REVZ(REV Ry ) REVZ(REVZ _ REz)
27 &
- Xl Ty Zy Iy~ Rauy® Zagy /By~ FagBe) + P
RMVZ(XMV2 n YMvz)l/z RMVZ(XMVZ + YMvz)l/e RMV2(XMV2 + YMvg)l/z REM(XMV2 " YMV2)1/2
- X -
By v MV 0 Yeviem ~ *EviEd
2 2 2 2
O~ + vy v + Yuy Bey(%y 2 + Yay2)
M
L 2y1/2 5 /2 2 1/2 2 2 _ p 2y1l/2
Ryy2(Ryy2 - Ry Ryy2(Byy® - Bu®) Ry >Ry = B2 BBy 2Ry - Ry
Xgy
Ry radius of Earth IE_{EV Farth-vehicle vector = ( Imy
Ry radius of Moon XEm Ty Xy
ﬁEM Earth-Moon distance = ( Ypy §MV Moon-vehicle vector = Rgy - Rgy = (Ywy
M Dy




TABLE ITT.- PERILUNE PERFORMANCE - RMS VALUES

Sehedule Miss Uncertainty Total
(No. of Errors Perilune vari-| r, v, | T, v, |applied AV,
observations) ation, rp, km| knm m/sec| km { m/sec m/sec
?i£é>2 None 1.67 k76| 1.17/0.79 | 0.077 9.76
.2
?226) uE 1.71 L.79f 1.18] .82 | .o82 9.81
?iﬁé)e by 2.40 8.96| 1.46| .91] .185 9.78
Ref. 2
(ie6) Re 2.72 5.23| 1.19{1.98 | .083 9.78
(o) bRy REM 3.29 9.29| 1.49|2.11| .187 9.85
Lo
(222) None 1.66 5.80f 1.231 .77} .075 9.37
Tong
(225) U sy REM 3.32 9.20{ 1.52|2.21 | .207 9.50
short None 2.39 10.62] 1.73|1.79 | .170 10.86
(45)
Short
(ugg R » i s Rey 3.92 13.06{ 1.96(2.96 | .354 10.96

L6




TABIE IV.- PERIGEE PERFORMANCE - RMS VALUES
Schedule S Miss 7 Uncertainty Total
(No. of Errors Perilune vari-| r, v, 7, ¥, |applied AV,
observations) ation, Tp, km km m/sec km m/sec m/ sec
?gggt None 1.34 26.1| 2k.2 | 20.3] 17.7 3.8
?gggt With 1.35 28.3| 26.0 | 21.0| 18.3 I .6
Tong None 1.13 16.0| 16.1 | 12.3] 10.7 3.0
(400) : :
%ﬁg%) With 1.14 17.3]18.1 | 12.7| 11.1 3.5
| ) - .

TABLE V.- RMS ERRORS IN THE ESTIMATION OF THE ASTRODYNAMIC CONSTANTS

1 - Mok Sug | Rmp | (Ros o
Condition Time m3/sec2 m3/sec2 km observations
injeﬁzion 9x10° 3X10° 2 (0)
Only Aug 6.31X10° )
Only 4y 1.30X109 ?ﬁﬁg)g
Only ARpy At 1.62
) 7 e perilune _f};?g%éé 1.32x109 | 1.78 o
ALL 7.95%109 | 1.57x109 | 1.87 ?22%)
three _ _
errors 8.58x10° | 2.31X10° 1.95 S?i;?
A;T’ 8.45x10° | .646x10° | 1.93 S?gg%
! Long
pertfif 7.61x108 | .457x109 | 1.84 (h09)
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TABLE VI.- OFF-DESIGN RESULTS AT PERILUNE - RMS VALUES

Schedule . Miss Uncertainty Total
(No. of Blas Perilune ~ . AV,
observations)| condition | variation, T Vs T Vs m/sec
rp, km km m/sec km m/sec
80 | o bias 2.k 10.6 | 1.7 | 1.8 [ 0.7 10.9
80 o sec 2.8 12,2 2.3 | 1.9 .19 12.5
a’}B)y ) J
10 sec
80 7 8,7 3.8 16.0 3.5 2.3 = 15.4
10 sec
O . - . - . »
8 on o 2.6 11.1 1.9 1.9 20 11.2
10 sec
80 on B 3.7 15.5 3.4 2.2 .22 15.2
10 sec
80 on 7 2.4 10.8 1.7 1.8 .18 10.9
400 No bias 1.7 5.8 1.2 771 .08 9.4
10 sec
Loo @, B,7 1.9 17.1 4.8 1.4 .16 15.6

48



h Schéaule
(No. of
observations)

80

80

80

80

80
80
1400

Loo

TABLE VII.- OFF-DESIGN RESULTS AT PERIGEE - RMS VALUES

",y . f Miss Uncertainty Total
Perigee ~ ~ AV
condition | variation, T v, r, v, ’
rp, km km | m/sec km m/sec m/sec
No bias 1.3 26 ok 20 18 3.8
2);?; 1.k L 39 26 23 L.g
10 sec
6 6 66 I .1
@B,y 1 7 39 3 7
10 sec
on o 1.5 36 32 2? | 20 .1
0
in SEC 1.5 T1 62 33 33 7.0
10 sec 1.4 26 ol 21 18 3.8
on Y - o
No bias 1.1 16 i 16» 2 | 11 3.0
10 sec
_996;7_ 2.3 103 @g _?u,,,, »u77 8.5

ko
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